
Journal of Sound and <ibration (2001) 243(4), 679}697
doi:10.1006/jsvi.2000.3445, available online at http://www.idealibrary.com on
SPECIFIC FEATURES OF THE ACOUSTIC DIFFRACTION
FROM A PERIODIC SYSTEM OF PLANAR

SLIDING-CONTACT INTERFACES

A. L. SHUVALOV AND A. S. GORKUNOVA

Institute of Crystallography, Russian Academy of Sciences, ¸eninskii pr. 59, Moscow 117333, Russia.
E-mail: ashuv@ns.crys.ras.ru

(Received 7 February 2000, and in ,nal form 4 September 2000)

Propagation of sagittally polarized plane acoustic waves is considered in an orthorhombic
medium with a periodic system of N#1 in"nite planar cuts maintaining sliding contact
(ideal cracks). The re#ection and transmission rates are derived by the propagator-matrix
method. Two essentially di!erent types of stop bands exist, in which the imaginary part of
the Bloch vector either remains "nite or reaches in"nity. The latter corresponds to the
transmission cut-o!, which may come about speci"cally at the sliding-contact interface.
Coupling of the Bragg phenomenon with the cutting-o! e!ect produces quite speci"c
resonant features of re#ection and transmission. Especially sharp "ltering properties of the
spectra come about at a small deviation Dh from such angles of incidence, which provide
total transmission (anti-re#ection) independent of frequency, namely, at nearly normal
incidence of the fast mode, and at angles of incidence of the slow mode close to a certain
critical value. At DDhD@1, the spectrum of transmission (without mode conversion)
represents a nearly periodic group of abrupt dips to zero and a modulated group of
secondary drops increasing with growing (Dh)2N2, whereas the general spectral background
is close to unity. In turn, the re#ection spectrum at DDhD@1 contains sharp principal peaks
with modulated heights, reaching nearly unit height, and the secondary peaks against almost
zero background. Changes in the spectra shape on varying the angle of incidence h become
drastic near the speci"c threshold value of h, which corresponds to the mutual
transformation of the ordinary stop bands and cutting-o! bands. After the cross-over, the
transmission spectrum contains signi"cantly wide step-wise dips, within which the rate stays
very close to zero if N2A1.

( 2001 Academic Press
1. INTRODUCTION

The physical type of contact provided along a planar interface between two solids is known
to be one of the key factors in determining acoustic response from this interface. Various
linear models of interfacial contact can be interpreted in terms of the relation between the
relative tangential displacement (slip) along the interface and the shear stresses, so that
a perfect bonding corresponds to the absence of slip, while the opposite extreme is the case
of a sliding contact, incapable of supporting shear stresses. The sliding type of contact
models a perfectly lubricated interface, or a narrow crack "lled with an inviscid #uid layer.
It may also be viewed as a common long-wavelength limit for di!erent types of mixed
boundary conditions between &&loosely bonded'' solids, for which the factor between the
interfacial slip and the shear stresses is inversely proportional to the frequency (see, e.g.
reference [1]).

Acoustic properties of a sliding-contact interface have been studied by many authors with
respect to non-destructive material characterization and seismic-wave propagation.
0022-460X/01/240679#19 $35.00/0 ( 2001 Academic Press
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A signi"cant distinction in the case of perfect bonding has been revealed in the properties of
localized interface waves [2], and in the nature of re#ection}transmission [3]. Regarding
the latter problem, it was shown that a speci"c attribute of a sliding-contact interface is the
possibility of vanishing transmission of a plane acoustic wave (cutting-o! e!ect), so that
neither bulk, nor inhomogeneous modes are transmitted through such an interface into any
adjoining half-space for particular angles of incidence (which may be less than the angle of
total re#ection), or for particular frequencies if there is an intermediate layer in sliding
contact with two arbitrary substrates. At the same time, it was also found that the
sliding-contact interface between identical half-spaces brings about total transmission
(antire#ection) for certain angles of incidence.

The present paper studies the di!raction of sagittally polarized acoustic waves in an
orthorhombic medium with an embedded periodic system of sliding-contact interfaces.
Such a medium can be arranged by gluing together identical layers with the aid of
a low-viscosity lubricant occupying a su$ciently thin (compared to the wavelength) space
between the layers. Although much work has been done for composite structures with rigid
contact at interfaces (see reference [4]), little work appear to deal with systems of layers
in sliding contact. However, the aforementioned remarkable nature of the re#ection}
transmission at a single sliding-contact interface and a single sliding intermediate layer
suggests the possibility of striking features of the di!raction in a periodic structure with
sliding-contact interfaces. Indeed, a drastic transformation of the di!raction spectrum
should be expected with a small deviation of the angle of incidence from the angle of total
transmission, when the transmission cut-o! and the Bragg e!ect instantly come into play,
providing an abrupt increase of re#ection at certain frequencies. In a broader perspective, it
seems fundamentally interesting to explore the coupling between the cutting-o! e!ect,
stipulated by the sliding contact, and the Bragg-resonance phenomenon. As will be shown,
this endows novel aspects to the concept of Bloch stop bands and the ensuing properties of
the di!raction.

2. BACKGROUND

Consider a stack of N identical orthorhombic elastic layers of width h in sliding contact
along interfaces, which is bounded on both sides by semi-in"nite substrates made from the
same material as the layers. The structure may be also viewed as a single medium with an
equidistant system of thin planar cuts or cracks (their width being much less than the
wavelength), which are "lled with an inviscid #uid. Both the interfaces and the plane
orthogonal to them (the sagittal plane) are assumed to coincide with symmetry planes. The
co-ordinate axes are chosen so that the interface plane is ZX, the sagittal plane is X>, and
the axis > is orthogonal to the interfaces (Figure 1). The sagittally polarized displacement
"eld in the nth layer may be written in the form

u(n)"
4
+
a/1

b(n)a aae*
ua, ua"k

x
x#kay (y#nh)!ut, (1)

where b(n)a are partial scalar amplitudes; aa are the polarization vectors orthogonal to Z. The
equation of motion yields the dispersion relation for the sagittal modes a"1,2, 4, referred
to a given k

x
. Provided that k

x
O0, it may be written in terms of parameters

pa"
kay
k
x

, v"
u
k
x

(2)



Figure 1. Geometry of the problem. Numbers label partial modes a"1, 2, 3, 4.
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in the form (see, e.g., references [4, 5])
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where o is the density and c
ab

are elastic coe$cients in Voigt's notations. Let the subscripts
a"1, 3 and 2, 4 be associated, respectively, with the signs &&#'' (the slow wave branch) and
&&!'' (the fast wave branch). Given that c

11
'c

66
, the modes a"2, 4 are inhomogeneous

(p2
2,4

(0) at v~1'Jo/c
11

, and so are the modes a"1, 3 at v~1'Jo/c
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, unless the
section of the outer slowness sheet, related to the slow sagittal wave branch, is concave
around the X-axis. In the latter case, conditioned by the inequality
(c
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) [6, 7], the sagittal modes a"1,2, 4 are homogeneous (bulk)

in the range Jo/c
66
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L
, where v

L
nulli"es the radical in equation (3). Once the

modes are homogeneous, the subscripts a"1, 2 are assigned to the incident modes and
n"3, 4 to the re#ected ones (i.e., the modes with, respectively, negative and positive
y-components of the energy #uxes Pay ). The relation between the variable v and the angle of
incidence of the mode a"1 or 2 is furnished by the relation ha"arccot [pa(v)].

The (unnormalized) polarization vectors aa and the amplitudes la of corresponding
surface tractions p(a)

2j
"!ik

x
laie*

ua (k
x
O0), exerted by partial displacements, may be

written in the form [4, 5]

a
1
"A

a
1x

a
1y
B , a

2
"A

a
2x

a
2y
B , a

3
"A

!a
1x

a
1y
B , a

4
"A

!a
2x

a
2y
B ,

l
1
"A

l
1x
l
1y
B , l

2
"A

l
2x
l
2y
B , l

3
"A

l
1x

!l
1y
B , l

4
"A

l
2x

!l
2y
B , (4)

where

aax"!(c
12
#c

66
)pa , aay"ov2!c

11
!c

66
p2a ,

lax"!c
66

(ov2!c
11
#c

12
p2a ), a"1, 2, (5)

lay"pa[c12(c
12
#c

66
)#c

22
(ov2!c

11
!c

66
p2a )],



682 A. L. SHUVALOV AND A. S. GORKUNOVA
In the case of normal propagation (k
x
"0), the four-partial wave packet consists of

longitudinal and transverse modes, which exert tractions parallel to the polarizations.
The Stroh-normalized polarizations Aa"Caaa and traction amplitudes La"Cala may

be introduced according to the de"nition 2Aa )La"1 (a"1,2, 4) [5]. It follows that

C2a"
1

2(aa ) la)
, Ca`2

"iCa , a"1, 2, (6)

where Ca are real for bulk modes a"1, 2, characterized by the negative normal component
of the energy #ux Pay"!(uk

x
/2)aa ) la .

3. CALCULATION OF THE REFLECTION AND TRANSMISSION COEFFICIENTS

The boundary conditions at the sliding-contact interface prescribe vanishing of
tangential traction and continuity of normal displacement and traction. The former
requirement may be written at both interfaces of the nth layer in the form
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(7)

The condition of continuity of normal components across the interface between the nth and
(n#1)th layers implies that
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It is seen that the method of a propagator matrix in the form devised for the rigid-contact
multilayers, when displacements and tractions are continuous across the interfaces (e.g.,
references [4, 8], see also reference [9] for the case of weak bonding), cannot be
straightforwardly applied to the sliding-contact multilayers. Indeed, the condition of zero
tangential tractions (equation (7)) precludes taking the inverse matrix needed for
construction a (4]4) propagator matrix, such as would transfer the column of four partial
amplitudes through the sliding-contact interface. However, this condition may be utilized to
eliminate some of the partial modes from the remaining boundary conditions, which then
yield the 2]2 propagator matrix. Such a modi"ed matrix method was "rst worked out in
reference [10] for the wave propagation in alternating solid and #uid layers. The same idea
underlaid the consideration of the acoustic di!raction in piezoelectric or piezomagnetic
superlattices with screening (metallized or superconducting) interfaces, at which
electropotential or normal component of magnetic induction turns to zero [11].

Using equation (7), let the partial amplitudes of, say, the slow modes a"1, 3 be expressed
in terms of the amplitudes of the fast ones a"2, 4 (such a choice "ts the case of the mode
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a"2 incidence), so that
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where the layer's number n is arbitrary. Inserting equation (9) into both sides of equations
(8) allows one to eliminate the amplitudes of the modes a"1, 3. As a result, the relation
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is reached, where W is the (2]2) propagator matrix, transferring partial amplitudes of the
modes a"2, 4 from one layer to another. It has the form
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Typical patterns of the function g (v~1), studied in reference [3], are presented in Figure 2,
where
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and the dashed curve indicates purely imaginary values taken by g in the interval

Jo/c
11
(v~1(Jo/c

66
. Note that the maximum of g occurring at v~1(Jo/c

11
generally may or may not exceed unity (the case shown in Figure 2 is optional), which will
appear signi"cant in the subsequent analysis revealing the value g"1 as a certain threshold
of the angular dependence of the re#ection}transmission spectra.

In accordance with the symmetry of the problem (see references [4, 12]), the matrix W is
unimodular, i.e., detW"1. Therefore, W possesses the eigenvalues e*K2h, e~*K2h, where K

2
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the Bloch wave number. It satis"es the dispersion relation
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The &&entrance'' and &&exit'' matrices W
en

and W
ex

, transferring the amplitudes through
substrate I*"rst layer interface and through the last (Nth) layer*substrate II interface,
di!er from W. Bearing in mind the choice of the fast mode (a"2) as the incident one, and
implementing a similar elimination procedure as above, it is found that
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The amplitudes b(I)
2
, b(I)

4
of the incident and re#ected fast modes in substrate I are related to

the amplitude b(II)
2

of the fast mode transmitted through the multilayered structure into
substrate II (Figure 1) by the relation
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where the (N!1)th power of the 2]2 unimodular matrix W is given by the expression (see
reference [13])
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in which
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The partial coe$cients of re#ection and transmission are introduced in the form
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where r(2)
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describe, respectively, re#ection and transmission of the incident mode
a"2 into the modes a"3, 4 and 1, 2 (note that r(2)
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correspond to mode conversion of

the fast mode a"2 into the slow modes a"1, 3). The re#ection and transmission
coe$cients, referred to the Stroh-normalized representation of partial modes (see equation
(6)), are related to the coe$cients in equation (21) as
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In the forthcoming derivations the normalized form (22) will be adhered to. The conditions
of zero of tangential tractions at the interfaces of substrate I and substrate II, taken in
conjunction with equations (13) and (22), furnish the connections
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Further manipulation yields
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Once R(2)
4
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2

are determined, the coe$cients R(2)
3

, ¹(2)
1

, associated with conversion into
the slow re#ected and transmitted modes, follow from equation (23).

Provided that the slow mode a"1 is incident in substrate I, the corresponding
coe$cients R(1)
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1
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may be obtained from the above-cited equations by

interchanging indices a"2 and 1 on their right-hand sides, along with replacing g by g~1.
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Applying this to equations (27) and (28) gives
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Inserting N"0 or, equally, taking the long-wavelength limit Nh/jP0 yields the
re#ection and transmission coe$cients at the interface between two identical orthorhombic
half-spaces in sliding contact (see reference [3]).

4. ANALYSIS OF THE REFLECTION AND TRANSMISSION SPECTRA

According to reference [3], acoustic-wave transmission through a single orthorhombic
layer, enclosed between arbitrary substrates with sliding contact along interfaces, turns to
zero for some particular angles of incidence regardless of frequency, or otherwise for
a frequency-dependent angle of incidence satisfying the equation

sin(k
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h)#g sin(k
2y

h)"0. (32)

The primary interest here is to determine how the e!ect of transmission cut-o! couples with
the Bragg-resonance properties of wave di!raction in the periodic system of layers in sliding
contact. Apparently, the most drastic features are to be expected for the angles of incidence
close to those which provide the total transmission (anti-re#ection) independent of
frequency. This comes about, in particular, at nearly normal incidence of the fast (quasi-)
longitudinal mode a"2. Targeting the latter setting in the "rst place, the analysis is
commenced from the case of incidence of the mode a"2, while incidence of the mode a"1
is considered subsequently. As an example of layers and substrates material, which is to be
employed in graphical illustrations of analytical results, the TiO

2
tetragonal crystal will be

used (the four-fold axis is assumed to be orthogonal to the sagittal plane X>), whose elastic
constants and density values are taken from reference [14].

4.1. THE FAST MODE INCIDENCE

The spectral dependence of the Bloch wave vector K
2
, described by equation (15), is
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which furnishes the equations
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Note that the last two of equations (34) coincide at gO0, g~1O0 with the dispersion
relations for the Lamb waves in a plate with traction-free faces (see reference [4]). Hereafter,
when referred to, the set of roots of each of four equations (34) will be enclosed in braces,
and supplied with the corresponding subscript i"1,2, 4 and the superscript (ed) and the
subscript i (i"1,2, 4) corresponding to the number of this equation.
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D2, D¹(2)
2

D2 at the stop-band edges Mk
1y

hN(ed)
1

"n (2l#1).
At sin(k

2y
h)"0,

DR(2)
4

D2"1!
1#2g

(1#g)2#g2N2 tan2(k
1y

h/2)
"1!(1#2g) D¹(2)

2
D2 (36)

for Mk
2y

hN(ed)
2

"2nl, while replacing tan by cot in equation (36) yields DR(2)
4

D2, D¹(2)
2

D2 for
Mk

2y
hN(ed)

2
"n (2l#1). The stop-band edges Mk

1y
hN(ed)

3
and Mk

1y
hN(ed)

4
, determined,

respectively, by the third and fourth of equations (34), bring about

DR(2)
4

D2"1!
1#2g

(1#g)2M1#sin2(k
1y

h)sin2(k
2y

h)/4[sin(k
1y

h)#g sin(k
2y

h)]2(1#g)2N2N

"1!(1#2g) D¹(2)
2

D2. (37)

The values of the mode-conversion coe$cients DR(2)
3

D2, D¹(2)
1

D2, taken at the edges of stop
bands, are furnished by the relation

DR(2)
3

D2"D¹(2)
1

D2"gD¹(2)
2

D2, (38)

which follows from equations (35)}(37) and (24). According to equation (15), the imaginary
part KA

2
of the Bloch wave vector turns to in"nity within those stop bands, which contain

the spectral points satisfying equation (32). At such points, transmission falls to exactly zero
due to cutting-o! at the back interface of the "rst layer. In the forthcoming discussion, the
stop bands which include and do not include the solutions of equation (32) will be
distinguished, by terming them cutting-o! and ordinary stop bands respectively.

Consider the evolution of re#ection and transmission spectra with variation of the angle
of incidence h

2
of the mode a"2 from zero. In orthorhombic materials with c

11
, c

22
'c

66
and c

12
'0, the parameter g increases from g"0 at h

2
"0 (v~1"0) up to some maximum
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value and then decreases back to g"0 at h
2
"n/2 (v~1"Jc

11
/o) (see Figure 2). Exactly

normal incidence (h
2
"0) entails total transmission into the same wave branch: D¹(2)

2
D"1,

R(2)
4
"0, ¹(2)

1
"0, R(2)

3
"0, regardless of frequency. At nearly normal incidence h

2
@1,

equation (32) yields transmission zeros at the set of points Mk
1y

hN
c
,

Mk
1y

hN
c
+(!1)n~1g sinAS

c
66

c
22

nnB#nn (n"1, 2,2), (39)

where k
2y

/k
1y

is approximated by Jc
66

/c
22

, and

g+A
c
66

c
22
B
3@2

A
c
22
!c

66
c
12
#c

22
B
2
h2
2
@1. (40)

The points in equation (39) lie within the narrow nearly periodic cutting-o! bands, which
are located near zeros of sin(k

1y
h) (thus prompting the use of k

1y
h as a suitable variable for

graphical display of the spectra; see Figures below). The edges of successive nth cutting-o!
bands, related to n"2l and 2l#1 in equation (39), are, respectively,

Mk
1y

hN(ed)
1

"2nl, Mk
1y

hN(ed)
4

+2nl!2n tanAS
c
66

c
22

nlB (41)

and

Mk
1y

hN(ed)
1

"(2l#1)n, Mk
1y

hN(ed)
3

+(2l#1)n!2g cotCS
c
66

c
22

nAl#
1

2BD, (42)

where the roots Mk
1y

hN(ed)
4,3

of the fourth and third of equations (34) respectively are

approximated under the reservation that l(k
2y

/k
1y

)+lJc
66

/c
22

is not close to an integer
number. Values of the Bloch wave-vector K

2
at the opposite edges of each cutting-o! band

di!er by n, which may be interpreted as a result of the U-process (&&umklapp'') in terms of the
reduced Brillouin zone, see e.g., reference [15].

According to equations (35)} (37), the cutting-o! bands in equations (41) and (42) on
gradually varying spectral width D (k

1y
h) entail corresponding abrupt drops of the

transmission rate D¹(2)
2

D2 to zero, and maximums of the re#ection rate DR(2)
4

D2 with the
envelope approximated by equation (35). These transmission dips and re#ection peaks
come about in the corresponding spectra, shown in Figure 3, as successive packs of
¹
n

bands, which repeat themselves with salient similarity. The &&quasiperiod'' is ¹
n
"2C

1
,

where C
1

results from the ratio of the least integers C
2
/C

1
which satisfactorily

approximates the ratio k
2y

/k
1y

(for, the case displayed in Figure 3,
k
2y

/k
1y
+0)81+C

2
/C

1
"4/5, so that ¹

n
"10). From equations (41) and (42), the

cutting-o! bands, which are located closer to the borders of each pack, are narrower and
entail transmission drops and re#ection peaks with the width of the order D (k

1y
h)&g. The

cutting-o! bands lying in the middle of a pack, where l(k
2y

/k
1y

) is about an integer, are
noticeably wider, and hence so do corresponding transmission dips and re#ection peaks. By
equations (35)}(37), they become steeper and, thereby, increasingly broader with increasing
N (Figure 3(b)), which is due to the di!raction e!ect.

The ordinary stop bands at h
2
@1 group near zeros of sin (k

2y
h). The edges of the

mth band (m"1, 2,2) are the point Mk
2y

hN(ed)
2

"nm and the root of the third or fourth



Figure 3. Spectra of re#ection and transmission rates DR(2)
4

(k
1y

h) D2, D¹(2)
2

(k
1y

h) D2 for the fast mode a"2
incidence at the angle h

2
"53 upon a single layer (a) and "ve layers (b) of the TiO

2
crystal, for which g+0)12,

k
2y

/k
1y
+0)81 at h

2
"53.
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equation (34) at odd or even m respectively. From equations (36) and (37), at
g2N2&h2

2
N2@1 the ordinary stop bands do not manifest themselves in re#ection*

transmission (Figure 3(a)). Provided that g2N2 is not a small parameter, the re#ection and
transmission spectra contain markedly pronounced secondary extremums related to
ordinary stop bands (Figure 3(b)). Their envelope, approximated by equation (36), has the
quasi-period ¹

m
"2C

2
in terms of band's order m, where the integer C

2
is de"ned above

(¹
m
"8 in Figure 3). The extremums, which are located in the middle of quasi-periodic

packs close to cutting-o! extremums, are substantially ampli"ed. Note that the concept of
modulation of the Bragg peaks, underpinned by their position with respect to the cutting-o!
bands, is di!erent from the case of perfectly bonded layers, when the modulation is
governed by the modal coupling [16] or by a ratio of widths of layers in a cell [11, 17].

Thus, the spectra of coe$cients DR(2)
4

D2, D¹(2)
2

D2 at nearly normal incidence of the fast
mode represent a group o sharp principal extremums, which are associated with the
cutting-o! bands, and, when g2N2 is not too small, a group of secondary extremums, related
to the ordinary stop bands and generally increasing with growing g2N2. The peaks of
re#ection reach almost unit height against nearly zero background, and transmission drops
abruptly to zero against background close to unity. This signi"es sharp "ltering features of
re#ection}transmission under the given conditions. As regards coe$cients R(2)

3
, ¹(2)

1
, which

describe conversion of the incident fast mode into slow ones, they are essentially attenuated
due to the presence of the small factor Jg&h

2
in equation (23) (see also equation (38)).

Consider further deviation from normal incidence. Ensuing increase of g moves the
cutting-o! points Mk

1y
hN

c
and the band edges Mk

1y
hN(ed)

3,4
away from zeros of sin(k

1y
h), so that

the cutting-o! bands are broadened. At g)1, when equations (39), (41) and (42) are no
longer valid, these bands become essentially aperiodic and their widths become di!erent.



Figure 4. Dependence of cos(K
2
h) on k

1y
h at g+0)95 (a) and at g+1)1 (b), showing the transformation of the

Bloch spectrum at passing the threshold value g"1, attained in the case of the TiO
2

crystal. The stop bands are
marked and, in Figure 4(b), indexed.
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Some neighboring stop bands tend to each other, thus narrowing the propagation zones
between them. At g"1, the last two of equations (34) coalesce, and their roots appear
among solutions of equation (32). As a result, the value g"1, provided it is attained for
a given material, is a threshold for a drastic reshu%e of the structure of the Bloch spectrum
(Figure 4). In particular, a pair of cutting-o! bands, closely situated at g)1, may merge at
g'1 into a single one, containing two cutting-o! points (such a double cutting-o! band is
labeled as band 5 in Figure 4(b)). Continuing the increase of g'1, along with sin(k

2y
h)

increasing more slowly in comparison with sin(k
1y

h) due to decreasing k
2y

/k
1y

, entails some
pairs of cutting-o! points vanishing and thereby results in transformation of corresponding
double cutting-o! bands into pairs of ordinary stop bands, separated initially by a very



Figure 5. Spectra of re#ection and transmission rates DR(2)
4

(k
1y

h) D2, D¹(2)
2

(k
1y

h) D2 for the fast mode a"2
incidence at the angle h

2
"603 upon a single layer (a) and "ve layers (b) of the TiO

2
crystal (g+1)1,

k
2y

/k
1y
+0)10). Numbers in parentheses correspond to the indices of the stop bands in Figure 4(b).
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narrow propagation band. Hence, reducing the number of cutting-o! bands and more
frequent appearance of the ordinary stop bands are the general features of the Bloch
spectrum at increasing g'1. However, insofar as the discrepancy between sin(k

1y
h) and

g sin(k
2y

h) within the ordinary stop band emerging from the cutting-o! one is small, the
imaginary part KA

2
of the Bloch wave vector may reach a considerably large value, which

results in almost zero transmission which is virtually indistinguishable from that at
cutting-o! points. For example, see the ordinary ("nite) stop band 1 in Figure 4(b) and the
corresponding transmission dip in Figure 5.

Comparing the Bloch spectrum (Figure 4(b)) and the spectra DR(2)
4

D2, D¹(2)
2

D2, taken for the
same value g*1 at N"1 and 5 (Figures 5(a) and (b), respectively), shows the impact of
di!raction resonance at growing number N of layers. At N"1 (Figure 5(a)), the structure of
re#ection and transmission spectra is stipulated mostly by the cutting-o! points. At N2A1,
in accordance with equations (35)}(37), both the cutting-o! and the ordinary stop bands
reveal themselves signi"cantly. Figure 5(b) shows almost perfect transmission cut-o! inside
wide step-wise dips with in places embedded sharp peaks related to narrow propagation
zones. Such a drop of plane-wave transmission within a spectral range of the spectral width
D(k

1y
h) of the order of unity provides almost exactly zero transmission for an acoustic beam

radiated by a source of the size w*h, which is not too stringent a restriction. In turn, the
maxima of re#ection rate DR(2)

4
D2 within the cutting-o! and the ordinary stop bands come

about at N2A1 as steep and distinct peaks. Drops of DR(2)
4

D2 to nearly zero value occur
within narrow propagation zones due to cos[(k

1y
#k

2y
)h] tending to zero, so that in

equation (27) U@1, while WA1 because of its small denominator near the cutting-o! points.
Note that, according to equation (38), at g&1 the values of coe$cients DR(2)

3
D , D¹(2)

1
D ,

associated with mode conversion, are close to that of D¹(2)
2

D (see also equation (24)).
On reaching the maximum value, g begins decreasing with further increasing h

2
(Figure 2). This generally entails reverse character of the re#ection and transmission spectra.
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At h
2
Pn/2 and g2N2@1, the spectral dependencies of the coe$cients DR(2)

4
D and D¹(2)

2
D

consist of, respectively, narrow peaks and dips within the cutting-o! bands, again grouping
near zeros of sin(k

1y
h). The grazing longitudinal mode (h

2
"n/2, hence g"0) &&does not

feel'' sliding-contact interfaces between identical media, which corresponds to the limit of
total transmission D¹(2)

2
D"1, R(2)

4
"0, ¹(2)

1
"0, R(2)

3
"0 independent of frequency, similar

to the case of normal incidence.

4.2. THE SLOW MODE INCIDENCE

Suppose now that the slow mode a"1 is incident at the angle h
1

(see equations
(29)}(31)). The angles of incidence, which yield zeros of g (Figure 2), provide DR(1)

3
D"1,

R(1)
4
"0, ¹(1)

1
"0, ¹(1)

2
"0 for any frequency, due to transmission cut-o! on the substrate

I interface. On the other hand, the angle of incidence

h(0)
1
"arccotS

c
11
#c

12
c
22
#c

12

, (43)

which is associated with the pole v~1
0

of g(v~1), entails total transmission R(1)
3
"0, R(1)

4
"0,

D¹(1)
1

D"1, ¹(1)
2
"0 independent of frequency (h(0)

1
"453, if the sagittal plane is orthogonal

to the four- or six-fold symmetry axis). At angles of incidence h
1

close to h(0)
1

, when
g~1&Dh

1
!h(0)

1
D2@1, it is suitable to present equation (32) in the form

sin(k
2y

h)#g~1 sin(k
1y

h)"0, (44)

which matches insertion of the external factor g2 into U2 and W2 in equation (29). Further
along these lines, one may interchange indices a"1 with 2 and replace g by g~1 in
equations (35)} (37), (39), (41) and (42). If the slowness sheet of the slow sagittal wave branch
in a given material possesses the X-axial concavity and the pole v~1

0
lies in the range

Jo/c
66
(v~1(v

L
(see Figure 2(b)), it then follows that the spectral dependencies DR(1)

3
D ,

D¹(1)
1

D on k
2y

h manifest basically the same features at Dh
1
!h(0)

1
D@1 as the corresponding

dependencies of DR(2)
4

D , D¹(2)
2

D on k
1y

h at nearly normal incidence h
2
@1 of the mode a"2.

The principal dissimilarity of corresponding spectra in Figure 3(b) and 6 is related to the
quasi-periods of stop bands which indeed change due to a di!erent value of k

2y
/k

1y
.

Alternatively, the pole v~1
0

for a given material may come about in the range

Jo/c
11
(v~1(Jo/c

66
, in which the modes a"2, 4 are inhomogeneous and

hence values k
2y

and g are purely imaginary (see Figure 2(a)). Then equation (44) may
be speci"ed as

sinh( DkA
2y

Dh)#(gA)~1 sin(k
1y

h)"0. (45)

In such a case, for the angles of incidence h
1

close to h(0)
1

, either there is only a "nite number
of cutting-o! points and hence cutting-o! bands, which lie in the long-wavelength part of
the spectrum, or there may be no cutting-o! points and bands at all. The cutting-o! bands
may arise in the long-wavelength spectral domain and increase in number with further
variation of h

1
away from h(0)

1
(hence, increasing (gA)~1 ), but their number remains "nite as

long as v~1 is kept within the range Jo/c
11
(v~1(Jo/c

66
.

In the presence of the X-axial concavity on the outer slowness sheet, the re#ection
and transmission gain also speci"c features at the incidence of the mode a"1 at



Figure 6. Spectra of re#ection and transmission rates DR(1)
3

(k
2y

h) D2, D¹(1)
1

(k
2y

h) D2 for the slow mode a"1
incidence upon "ve layers of the TiO

2
crystal at the angle h

1
"h(0)

1
#33. In the given case, h(0)

1
"453 corresponds

to the value v~1
0

lying in the range Jo/c
66
(v~1

0
(v

L
, and g~1+0)089, k

1y
/k

2y
+0)74.
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the angle

h(c)
1
"arccotS

(c
12
#c

66
)2!c

22
(c

11
!c

66
)

c
22

c
66

, (46)

which corresponds to v~1"Jo/c
66

. In the case of the sliding-contact interface between
two identical orthorhombic half-spaces, the angle of incidence h(c)

1
provides total

transmission R(1)
3
"0, ¹(1)

1
"1, accompanied by the excitation of transverse modes

travelling along the interface (R(1)
4
"0, ¹(1)

2
"0, but r (1)

4
, t(1)

2
O0 in view of divergence of the
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Stroh normalization (6) for grazing modes). On the other hand, ful"lment of equation (44) at

v~1"Jo/c
66

due to g~1&p
2
"0 and k

2y
"p

2
k
x
"0 ensures cutting-o! of transmission

through an orthorhombic layer enclosed between arbitrary substrates with elastic
properties di!erent from those of the layer [3]. In the present case of an identical material of
layers and substrates, neither of these two phenomena persists in a pure state. From
equation (29), exactly at h

1
"h(c)

1

DR(1)
3

D2"
F

1#F
"F D¹(1)

1
D2, (47)

where

F"

[1!cos(k
1y

h)]2

[sin(k
1y

h)#(gp
2
)k

x
h]2

sin2(Nk
1y

h)

sin2(k
1y

h)
. (48)

Since the denominator of the "rst ratio on the right-hand side of equation (48) largely
exceeds the numerator, there is practically total transmission at h

1
"h(c)

1
for any frequency,

except for the resonance spectral zones, which are attached to the set of points
Mk

1y
hN"n (2l#1) (l"0, 1,2) and are associated with the second ratio in equation (48).

Within these zones of the spectral width D (k
1y

h)+2n/N, the re#ection rate has peaks with
the heights

DR(1)
3

D2"C
2Np

1
(gp

2
)n(2l#1)D

2
, (49)

decreasing on increasing the peak number 2l#1, while the transmission rate D¹(1)
1

D2 has
corresponding drops (Figure 7). Note that there are no resonances at Mk

1y
hN"2nl due to

the vanishing numerator of the "rst ratio in equation (48). At the same time, a slight
deviation of the incidence angle h

1
from h(c)

1
provides a non-zero value k

2y
, and then

equations (47) and (48) remain approximately valid only in the long-wavelength spectral
domain, in which k

2y
h"p

2
k
x
h@1. Outside this range, the re#ection peaks emerge at the

points Mk
1y

hN"2nl and the modulation of the re#ection spectrum by the sinusoidal
envelope reveals itself clearly (see the inset of Figure 7).

5. SUMMARY

The propagation of sagittal acoustic waves through the system of identical orthorhombic
layers in sliding contact, enclosed between substrates of the same material, is considered.
The substantial di!erence in re#ection and transmission spectra when compared with the
case of perfectly bonded multilayers is due to the Bragg phenomenon combining with the
e!ect of transmission cut-o!, which pertains particularly to the case of sliding contact. This
coupling entails new features of the concept of stop bands, which relates the re#ection
increase to a rising imaginary part of the Bloch vector. The imaginary part, remaining "nite
within the ordinary stop bands, now reaches in"nity within the stop bands, termed
cutting-o! bands. Especially, abrupt transformation of re#ection and transmission occurs
at small deviation of Dh from the normal incidence of the fast mode a"2 or else from the
angle of incidence (equation (43)) of the slow mode a"1 (the latter option presumes the
presence of concavity on the slowness sheet of slow sagittal wave branch). Then Dh"0



Figure 7. Spectra of re#ection and transmission rates DR(1)
3

(k
1y

h) D2, D¹(1)
1

(k
1y

h) D2 for the slow mode a"1
incidence upon "ve layers of the TiO

2
crystal at the angle h

1
"h(c)

1
#n10~3, where h(c)

1
"343 corresponds to

v~1"Jo/c
66

due to the X-axial concavity on the outer slowness sheet for TiO
2
. Here g+14, k

2y
/k

1y
+0)03.
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corresponds to total transmission independent of frequency, while at DDhD@1 the
transmission spectrum acquires nearly periodic sharp principal dips to zero, accompanied
at DDhD2N2&1 by secondary minimum, and the re#ection spectrum gains corresponding
principal and secondary peaks with modulated heights. The spectra evolve with variation of
the angle of incidence h, and then they undergo a drastic change near the point g"1, which
implies mutual transformation of the ordinary stop bands and cutting-o! bands. This
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cross-over leads to step-wise dips of transmission to almost zero, which persists at N2A1
within signi"cantly wide stop bands, and to a rapid change of re#ection from about unit
value to nearly zero and back within narrow propagation zones.
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